If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2-42x=0
a = 32; b = -42; c = 0;
Δ = b2-4ac
Δ = -422-4·32·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-42}{2*32}=\frac{0}{64} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+42}{2*32}=\frac{84}{64} =1+5/16 $
| (d/4)+(d/6)=5 | | (5x-9)=(2x+12) | | -(-4)-(4(-2)-5(-4))+2(-4)=x | | 2(2x-1)+8=30 | | 4x*0.5x=0 | | 1/2(-12x+4)+5x=(24) | | 13/3=x/7 | | 11x-17=2x+10 | | 0.5c=47c= | | x+2-5=8 | | 1.15y+0.02y=1.19y | | 0=9.174-9.81t | | -2x=12=-2 | | 0.002k=83k= | | -4x+5=-5x-8 | | 2t/t-2-4/t-2=1 | | 3x2+4x=7 | | 0.09a=9a= | | 0=20.5-32.2t | | 2850/100=x | | 5b×3=46 | | 0.09+.13(x+300)=61 | | 7x+12=5x+42 | | 20=(5/10c) | | 3(x+4)+7=22 | | 2(3m+6)2m=-20 | | 3+5n=1*8n+2 | | 4x+72=3x+2 | | 7x-(6x+6)=3x-32 | | 7x+5x-63=42-9x | | -x+2=222 | | 20x-6-5x+3=0 |